The Case for Using an IRM to Scale Data Intake

Among many, there are three major problems faced by an analyst before data is useful:

  • data aggregation and storage
  • data security and access
  • data wrangling (ETL/ELT)

This article deals with data security and access using an information resource management system, IRM. My own company, Simplr Insites LLC, is writing such a system alongside a file storage solution in an effort to modernize the research process.

Problem

One significant problem faced in research and cooperation is the attainment of clean and useful data. Obtaining this data often means gaining access to systems, forming legal agreements, obfuscating certain data, and embarking on the painful process of data wrangling.

While ETL and ELT are critical steps, just obtaining sensitive data, even from within an organization, is tricky. Consider the following cases related directly to access:

  • data sets include confidential information
  • data sets are ensnared in legal agreements regarding who can access data
  • users want to control access to data to ensure it is not misused
  • external users are allowed varying degrees of access

IRM as a Solution

Oracle generated a solution that attempts to tackle the data security issue. The Oracle IRM documentation provides a rather informative graphical overview of their tool:

irm

In this system, an external user accesses a load balanced IRM server application which controls rights and access to different resources and files. Several firewalls help to improve security along with authentication, access grants, and encryption. Web services  and internal users utilize the IRM server as well.

Beyond the visible components, tokens can be used to instantly manage resources and propagate access changes.

Most file systems also offer the capability to pull the date when a resource was created or modified and various permissions information. This is useful for logging purposes.

Setting Up an IRM

It is not necessary to rely on Oracle for an IRM solution. In fact, the Oracle IRM only works with Microsoft Windows.

Each component can be paired with a reliable tool, most of which I have blogged about. A set of pairings might include

Base Application and Resource Management Django with Secure Login
REST API Resource Access Django OAuth Toolkit
Access Management Django Oauth Toolkit and a Database System
Individual Resource Tokens Randomly Generated and Hashed Key
File Storage GlusterFS or an Encrpytable File System
Encryption of Resources PyCrypto or a Similar Tool
Firewalls IP Tables or another firewall
Two Step Verification through SMS Twilio
Key Storage Stack Exchange Blackbox
VPN Access Firefox
Logging and Anomaly Detection Elastic APM and the ElkStack

Logging

Logging is critical to security. Logs allow administrators to spot harmful activity, generate statistical models based on usage, and aid in auditing the system.

Tokens

Tokens are a perfect solution for controlling document access in the system. They allow a user to gain access to a document, offer scopes for access, and often contain scopes that grant levels of access to a resource.

A user should be required to log in to the application to retrieve a token which refreshes on a regular schedule. These tokens can be revoked and changed by a resource owner or administrator much like using a file system.

Fernet Encryption

While RSA encryption is useful for two way encryption, Fernet encryption is stronger and more useful for storing files. If a system does not offer encryption, tools such as PyCrypto offer Fernet encryption.

Storing Keys

Keys should not be stored in the open. If compromised, it is extremely easy to gain access to a key stored in plain text. Instead, tools such as Stack Exchange’s Blackbox store keys in a system backed by a GPG key ring.

Two Step Downloading for Extra Security

Downloading a file in a secure manner might require extra protection, particularly when an external but trusted user desires access to a resource. To avoid spoofing and avoid a compromised computer from gaining access to a resource, two step verification is a recommended step.

In this process the external user provides an access token to obtain a document which is verified. On verification, a text message containing an access code is sent to the external user and the internal user is notified of the access. The external user enters the code and, if required, the resource owner or admin approves the download.

This type of process is not difficult to implement through desktop or web applications using push notifications or persistent storage.

Conclusion

Secured yet accessible storage is a critical problem for any data analyst or scientist. Using an established IRM or implementing a similar tool helps secure access and empower analytics.

The Case for Microservices, Where To Segment

micro

There is a growing need for microservices and shared services in the increasingly complex and vibrant set of technologies a true IT firm runs. Licensing, authentication, database services, ETL, reporting, analytics, information management, and the plethora of tasks being completed on the backend are impossible to accomplish in only a single application.

This article examines boundaries discovered through my own company’s experience in building microservice related applications.

Related Articles:

Discovering Sharable Resources in a Microservices Environment

Security in a Microservices Environment

Segment On Need and Resource Usage

To be fair, where segmentation of systems occurs depends on the need for each service. Clients may need a core set of tasks to be completed in one area or another. Where those needs diverge is a perfect boundary for establishing a service.

For instance, our clients need ETL, secured cloud file storage, data sharing, text management, FERPA/HIPP and legally compliant storage of data, analytics, data streaming, surveying, and reporting. Each of these areas encompasses one company or another but is cheaper done under a single roof to the tune of $7000 in savings per employee per year at a small to medium sized company.

Our boundaries are specified directly around needs, security, and resource costs. ETL encompasses one boundary due to computation costs, cloud storage another for security reasons, logging for legal compliance another, analytics takes up another service due to computational costs, stream and survey intake and initial analysis comprises another more vulnerable piece, and reporting yet another. Overlapping everything is a service for authorization and the authentication of access rights through oauth2.

The different services were chosen for one of the following factors:

  • resource cost
  • shared tasks and resources
  • legal compliance and security

Segmenting for Security

The modern world is growing increasingly security and privacy conscious. Including authentication systems and the storage of information on the same system as a web server is not recommended.

Microservices allow for individual applications to be separated and controlled. Access can be granted to specific clusters based on a firewall and authentication. Even user access control is easier to maintain. Hardware boundaries can be easily established between vulnerable pieces of a system.

Essentially, never stick a vulnerable frontend, streaming, or survey application on the same hardware as your potentially identifying initial file storage and always have some sort of authentication and access rights mechanism.

Results

Our boundaries are helping us scale. Simplr Insites, LLC dedicates individual resources as needed to each service. It also allows the company to offer a pricing scheme offering variable levels of services tailored to a customers needs more easily.

Some clients do not need an ETL system and only want case note management. That is possible. At the same time, granting GPU resources to the analytics cluster while giving our reporting cluster more RAM is as well.

In essence, Simplr Insites was able to reduce the cost of running systems in a 42 U shared space, possibly by as much as $5000 per month for our small company, while remaining more secure and delivering faster and tailored results based on the needs of clients through a single web frontend based SAAS application.

Conclusion

Discovering where to place microservice boundaries is critical to the success of an application. It relies on many factors ranging from resource cost, to the ability to share resources, and even legal compliance and security. Appropriate splitting of services can reduce cost and increase speed.